[T]he report’s executive summary certainly gets to the heart of their findings.
“The rhetoric from small modular reactor (SMR) advocates is loud and persistent: This time will be different because the cost overruns and schedule delays that have plagued large reactor construction projects will not be repeated with the new designs,” says the report. “But the few SMRs that have been built (or have been started) paint a different picture – one that looks startlingly similar to the past. Significant construction delays are still the norm and costs have continued to climb.”
deleted by creator
Nuclear technologies missed their window. The use cases where they are the best technical solution now are extremely limited, and that means you can get the investment going to improve them.
It’s a curiosity now.
There’s an alternative timeline where Chernobyl doesn’t happen and we decarbonize by leaning on nuclear in the nineties, then transition to renewables about now. But that’s not our timeline. And if it were, it would be in the past now.
From where I stand you couldn’t be further from the reality of the situation.
Nuclear has a number of advantages from low carbon output per kilowatt over lifetime as well as being extremely cheap per kilowatt.
But the real advantage being overlooked is the small foot print and land use compared to other forms power generation. A nuclear reactor is ideal for high density population areas, adding no pollution like fossil fuels and using a fraction of the land that renewables require. And there is room for overlap between renewables and nuclear as well, meaning days where wind or solar would produce more power than usual, its easy to scale back solar production to take advantage of cheaper power, and vice versa for times when renewables aren’t going to generate enough to meet demand nuclear can increase their output relatively quickly and effectively.
The future of nuclear is however one of the most important. We are eventually going to be spending humans to other planets, and having mature, efficient and compact forms of power generation with long lifetimes and minimal start up power from idle states is going to be important, solar gets less effective the further from the sun we get, you can’t stick a wind turbine on a space craft and expect good results, and you’re out of your mind if you want to burn fossil fuels in an oxygen limited environment.
Treating nuclear as more than a curiosity but rather as the genuine lifeline and corner stone of our futures and future generations is significantly more important than fossil fuel profits today and all their propaganda.
as well as being extremely cheap per kilowatt.
What? How? Far as i know it’s the most expensive, with a lot of hidden costs.
When costs are level per kilowatt over lifetime Nuclear is cheaper thanks to economies of scale, it’s only more expensive when plants are restricted by local authorities in how much they can produce in a given cycle so that other power generators in the energy sector can fill their contracts. When these artificial caps are removed and the plant is allowed to operate as intended and no kneecapped to allow coal and oil plants to operate at their peak effeciency rates, nuclear drops below .10USD. And thats using outdated equipment and maintaining the absurdly high safety standards saddled upon them despite being the safest form of power production bar none.
When costs are level per kilowatt over lifetime Nuclear is cheaper thanks to economies of scale
Citation needed.
Vogtle added 2000 megawatts of capacity for $35 billion over the past 15 years. That’s an up-front capital cost of $17,500 per watt. Even spread over a 75 year expected lifespan, we’re talking about $233 per watt per year, of capital costs alone.
Maintenance and operation (and oh, by the way, nuclear is one of the most labor intensive forms of energy generation, so you’ll have to look at 75 years of wage increases too) and interest and decommissioning will add to that.
So factoring everything in, estimates are that it will work out to be about $170/MWh, or $0.17 per kwh for generation (before accounting for transmission and reinvestment and profit for the for-profit operators). That’s just not cost competitive with anything else on the market.
Economies of scale is basically the opposite of the problem that 21st century nuclear has encountered, which is why the current push is to smaller reactors, not bigger.
There’s a place for extending nuclear power plant lifespans as long as they’ll go. There’s less of a place for building new nuclear.
When these artificial caps are removed and the plant is allowed to operate as intended and no kneecapped to allow coal and oil plants to operate at their peak effeciency rates, nuclear drops below .10USD.
Wholesale or retail cost? Either way, that’s not especially cheap compared to renewables.
Nuclear may be cost competitive with putting solar panels in space at this point. Granted, that’s back of the envelope costs for a hypothetical space based solar system compared to nuclear plants that already exist. But the fact that they’re close is not a good sign for nuclear.
Plants will take 10 years to build, at least. If every permit was signed today, there wouldn’t be a single GW of this new nuclear going on the grid until 2034. We’re aiming for major reduction in CO2 by 2030. Oh, and the huge amount of concrete needed would create a massive spike in CO2 by itself. Timeline issues alone kill nuclear before it starts.
Edit: fixing autocorrect’s corrections
Extremely cheap per kilowatt? Every statistic out there that I’ve seen and that includes government funding, as well as construction and deconstruction costs, paints a different picture. Nuclear is only competitive with coal or the relatively underdeveloped solar thermal.
In 2017 the US EIA published figures for the average levelized costs per unit of output (LCOE) for generating technologies to be brought online in 2022, as modelled for its Annual Energy Outlook. These show: advanced nuclear, 9.9 ¢/kWh; natural gas, 5.7-10.9 ¢/kWh (depending on technology); and coal with 90% carbon sequestration, 12.3 ¢/kWh (rising to 14 ¢/kWh at 30%). Among the non-dispatchable technologies, LCOE estimates vary widely: wind onshore, 5.2 ¢/kWh; solar PV, 6.7 ¢/kWh; offshore wind, 14.6 ¢/kWh; and solar thermal, 18.4 ¢/kWh.
Emphasis mine, source: https://world-nuclear.org/information-library/economic-aspects/economics-of-nuclear-power
If you scroll down literally like. A paragraph past that you will see a very nice table showing the spread of nuclear costs. Some (including in the US, which is used for the EIA figures) are quite expensive, but others (notably South Korea) are very much cost-competitive or better than renewables. Also worth noting, the renewable estimates have spread themselves, and do not include overinstallation/storage required to behave as firm power.
Which is to say:
A - there certainly are quite a few places that nuclear doesn’t make sense, at least currently. Including the US
B - equally, there are a lot of places around the world where nuclear is competitive
C - we should perhaps look at why the US is so expensive relative to other countries; it’s not some law of nature, we can change it. And it’s probably not just because other countries under-regulate them (I’d buy that for some of the countries listed)
I specifically picked the statistic that claimed to have included the full cost of installing something new. Most other statistics only include prolonging the life of existing plants, thus ignoring the installation costs completely. You can just quote the paragraphs that prove your point the same way I have and then we can discuss further. Maybe I made a mistake, who knows.
Or you could… Actually read the entire source you linked? It’s a pretty good article and goes into a lot of detail on why LCOE estimates vary significantly between countries and depending on discount rate assumptions, so quoting one specific number is useful context but not the full story.
The problem isn’t whether the LCOE numbers you quote consider the capital costs - they do, and that’s correct - so do the ones in the table below it. It’s that those are average values taken from the USA, which has among the highest capital costs for installing new reactors in the world. At best that tells us that fusion isn’t cost competitive in the USA right now.
The real advantage of nuclear is it’s constant output of power compared to the variable output of solar and wind
The space based nukes paragraph is irrelevant. While I agree with the point thtat it may not only be useful for long term space habitation, it may be required, I don’t see what that has to do with earth based commercial power generation. They’re very different beasts with little overlap. That’s like saying you support corn based subsidies, because we’ll have to grow crops off world: true but not relevant.
You are on a nuke loving platform and people are going to downvote anything that isn’t hard pro nuke. But you are correct. I have had this exact same discussion before. The numbers you are looking for are called the LCOE, or the ‘levelized cost of electricity’ where the lifetime of the technology cost if factored in. Offshore wind is currently the lowest followed by solar. Nuke is clost to 10x the cost. There is even an international nuke consortium that has several reports agreeing with exactly what you are saying and basically sum it up as: if you invested in nuke early, then it is cost efficient to just keep upgrading. If you didn’t invest in it early, then the cost to implement it so high that you are better off going wind/solar. Even if you add in the cost of battery systems, it is still cheaper than building a new nuke plant. And more than that, with these new nuke plants you have to upgrade all your infrastructure because your old wires can’t handle the output loads. If you look at the 30+ billion Georgia spent on this plant, they could have simply given out a micro generation grant to everyone to add solar to their roofs, not needed to upgrade the lines, and been far better off. But hey, just like reddit, if you are commenting on lemmy you better be pro nuke only and ignore the other numbers.
So, essentially, nuclear power is like airships, except with worse disasters?
More people died in airship incidents than in civil nuclear power.
E: typo
Yeah, read it. Also the article with the discussion on the death toll. 31 immediate deaths 60 attributable in the following two decades
The official WHO estimate with 4000 more cancer deaths until 2050 is based on the disputed LNT model. Even UNSCEAR itself says:
The Scientific Committee does not recommend multiplying very low doses by large numbers of individuals to estimate numbers of radiation-induced health effects within a population exposed to incremental doses at levels equivalent to or lower than natural background levels.
https://www.theguardian.com/commentisfree/2011/apr/05/anti-nuclear-lobby-misled-world
Dr. Thomas shares that contrary to popular belief there is a scientific consensus that the Chernobyl accident has resulted in the deaths of less than 55 people as a result of radiation.
The two airship accidents with the most casualties count together 120 dead (USS Akron and Dixmude).
Are you German? That’s standard German rethoric and the reason, they shut off their reactors prematurely. It’s not how the world sees it though.
No. I’m not German. We run our reactors as long as possible because free money is free money ;)
Does anyone know about the technology that nuclear submarines and aircraft carriers use? Why are they able to operate but we can’t use the same technology on land?
I was a nuclear operator in the Navy. Here are the actual reasons:
- The designs are classified US military assets
- They are not refuleable
- They only come in 2 “sizes”: aircraft carrier and submarine
- They are not scaleable. You can just make a reactor 2x as big
- They require as much down time as up time
- They are outdated
- The military won’t let you interrupt their supply chain to make civilian reactors
- New designs over promise and underdeliver
- They are optimized for erratic operations (combat) not steady state (normal power loads)
- They are engineered assuming they have infinite sea water available for everything
There’s more but that’s just off the top of my head
Because if the military wants something, budgets are big. And they do not need to make money.
Military expenses, the only socialism acceptable to Americans.
Gotta love how the post office is legally required to show they can turn a profit, but the military has a history of building literal burn pits that essentially burn US tax dollars by lighting equipment on fire and giving soldiers cancer.
https://www.teenvogue.com/story/most-ridiculous-things-united-states-military-spent-money-on
Boner pills, anti-rape lip balm (which they destroyed) and other such brilliant things.
And the margins for DoD contracts can be through the roof.
During her face-off with manufacturing company TransDigm at the hearing, AOC questioned the company’s alleged price gouging on a small metal part, called a “non-vehicular clutch disc,” that the government purchases for the Department of Defense.
According to the congresswoman from the Bronx, the part is about 3 inches in size and costs TransDigm $32 to produce — which is why she’s pissed the company is charging $1,443 per disc. The company reportedly sold the government 149 discs for $215,000.
deleted by creator
The fact that this was your take away is concerning.
No government service should have to show a profit. If it’s an essential service, then it needs to be done. The only time money should come into it is in regular audits to ensure the budget is being used efficiently.
Yup, the military’s purpose is to not be needed. It should be strong enough to deter attack and assist diplomacy (carrot and stick), and no larger. Our (US) military is bigger than that, so it gets used in place of diplomacy.
Because military engineers overengineer these things from the most expensive materials available, and they also perform frequent maintenance on them, which is also expensive.
To add to this: A certain type of Soviet submarine used a lead-bismuth alloy as coolant for their reactor. The coolant solidifies at ambient temperature so it had to be heated indefinitely by some way or another or else it solidified and trashed the reactor. I don’t think any of them exist anymore since Russia wasn’t able to afford sustaining the giant navy after the Soviet collapse.
Just goes to show how insane nuclear submarine engineering is, or was at some point.
Why are they able to operate but we can’t use the same technology on land?
Military budgets. You can use the tech, but no civilian can afford it.
I’m pretty sure they essentially are “one time use” only.
Extremely simplified:
They run for 20-30 years without refueling, which means the reactors/system could be built more compact, a higher level of safety and require less maintenance / monitoring / fine-tuning.
All those parameters are connected in an equation which means if you want higher safety you have to make another parameter “worse”. By making the system “one time use” you set the “refuelability” and “repairability” parameters to the lowest and can therefore up the other parameters.
Also, military requirements are very different from civilian.
I’m pretty sure most military reactors use weapons grade uranium that’s enriched to mid 90%. Countries get sensitive when you start enriching uranium to the mid 90s.
Because if the electricity produced on these vessels was ten times the normal price, it would still be peanuts in the grand scheme of things.
deleted by creator
This was pretty much obvious for everyone from the beginning, except if you’re a fanboy of this tech.
They are still going for big building size reactors that have site specific details even if the core is built in a “factory”. This still doesn’t scale well.
I wonder if it can be economical to go smaller still and ship a reactor and power generation (TRG maybe or a small turbine) that then doesn’t require much other than connecting wiring and plumbing and its encased in at least one security layer covered in sensors if something goes wrong its all contained. Then its just a single lorry with a box you wire in. That has a chance of being scalable and easy to deploy and I can’t help but think there is a market for ~0.5-10 KW reactors if they can get the lowest end down to about $20,000, it would compete OK with solar and wind price wise.
I suspect no one has bothered because the regulatory overhead means it has to be big enough to be worth it and like Wind power scales enormously with the size of the plant. But what I want is a tiny reactor in my basement, add a few batteries for dealing with the duck curve and you have something that will sit there producing power for 25 years and a contract for it be repaired and ultimately collected at end of life.
You can sort of do this today using the Tritium glow sticks and solar cells but it doesn’t last long enough and the price is not competitive. Going more directly to the band gap in a silicon or something else semi-conductive and a long lived nuclear material could maybe get a little closer price wise.
You want people to have their own private nuclear reactor in their basement?
Nukeheads are insane
That’s some real 1950s futurism.
Ford proposed a car with a nuclear reactor.
I sympathized with your statement immediately, but then after thinking about it for a bit, most people basically have controlled pressure bombs (gas-water boilers) and buildings filled with gas pipes that can (and have) wiped out whole city blocks.
It’s still not a good idea, obviously, but localized fossil fuels are also ridiculous when you think about it.
Nuclear waste and fuel is dangerous for years and is an invisible hazard. Propane and gas at least only explode once
I wouldn’t mind one in my basement… If I had a basement. But I do have a nice shed, where a 30MW reactor would fit nicely.
Nukeheads are insane
That’s your opinion. My opinion is that we need distributed power generation that can handle baseload. And neither solar nor wind can do that. My personal experience is, that our wind turbine usually doesn’t spin for several periods of up to 10 days in December through March. And energy storage with the required capacity still doesn’t exist either. Thus the power plants will be burning LNG, biomass, garbage or oil and coal, for the foreseeable future.
A centrally controlled, well regulated, network of small reactors will solve the problem.
Look, friend: as much as I like nuclear energy and decentralization of the powder grid, per home reactors could never, ever work. For the simple reason that the majority of us filthy apes are complete idiots. Furthermore, nuclear works currently because it has oversight by educated, trained professionals in a setting where oversight can be effective. Even if you had some sort of travelling nuclear engineer that would check up on your garage reactor, if anything ever went wrong with it then the response time would be too long to adequately deal with the situation.
The only way a distributed network of reactors could work is if it either had massive overhead or if literally everyone had training on the maintenance of a nuclear reactor. And this isn’t even mentioning the possibility of adverse weather events potentially damaging the reactor or how the waste would be dealt with.
deleted by creator
Actually, none of them do. This other guy is insane and no one gets a reactor in their basement, but we have neither the production capacity nor the time to avoid nuclear being a significant portion of all energy in a fissile free future.
deleted by creator
I think the ones small enough for a truck are called micro reactors and they top out at 30 MW
Why can’t we switch to thorium and molten salt instead? Much cleaner, much safer, same idea.
Because it is actually not that simple, especially on the “cleaner” and “safer” parts.
deleted by creator
Wikipedia has a good discussion, if you don’t need technical detail. They’re fairly optimistic, but do note difficulties. It actually looks more positive than I expected, with the number of demonstration reactors in the last decade or so. Note: “demonstration”. I don’t think there’s anything actually blocking use of Thorium, but some unresolved issues for commercialization, plus it’s not clear the actual results are better, or that nuclear is any longer a good place to invest. It’s more of: at this point, why would you go down that road?
At least ten years ago I first read about thorium reactors on 4chan, I believe, and how it will be the next big thing. Back then someone countered that he first heard about thorium reactors several years ago that they will be the next big thing, but they are never production ready and always experimental because they are so hard to contain. And so the story continues about thorium reactors and how they are just around the corner.
Not that I’m against it, I just think it’s a little funny.
Sorry, can’t find the stuff I read about it a while back when I was interested about it, or was it a YouTube video?
Anyway, here is what I remember: having the radioactive fuel as a liquid makes it easier to leak, and once that’s happened, the environment damage will spread faster to ground water. Also sodium salt is liquid at high temperature, at which it will spontaneously catch fire in contact with oxygen (air), so any leak will cause a catastrophic fire, and this is what caused the demise of the French prototype “Projet Phénix” in the 70s.
Theoretically the main advantage of the thorium is precisely because its safer and cleaner. When removed from its neutron source thorium quickly ceases fission and decay.
The technology doesn’t exist in a commercially viable form. That’s why.
Containing it for a while seems to be super hard. It’s really corrosive to most anything that can withstand the heat and pressure. Basically, they haven’t managed to make plumbing that works for it. Liquid salt gets mad at shit all the time.
And even more expensive, no?
I didn’t think that was ready for commercialize yet. You have all the disadvantages of nuclear, but need additional development costs, need to implement a supply chain, then build out a new technology that is less efficient than existing nuclear, has unclear service life, may be supplanted by fusion or renewables, and you can still use it to make bomb material. Seems like a poor idea and a waste of money.
From India’s perspective, they’d get to lead in a new technology, where they have huge reserves of fuel, and cheap labor to scale up to a billion energy-starved citizens …. And if it helped increase their nuclear weapons stock in the face of tight controls on plutonium, so much the better
What makes you think it’s less efficient. Normally high temperature reactor technology is more efficient not less.
I’m not claiming to be any more knowledgeable than what I read here, but Wikipedia says
https://en.wikipedia.org/wiki/Thorium-based_nuclear_power
In 1973, however, the US government settled on uranium technology and largely discontinued thorium-related nuclear research. The reasons were that uranium-fuelled reactors were more efficient, the research was proven and thorium’s breeding ratio was thought insufficient to produce enough fuel to support development of a commercial nuclear industry
I didn’t say anything about thorium. Not all molten salt reactors are thorium though. In fact not all high temperature reactors are molten salt either. People keep mixing these technologies up.
So an interesting thing I’ve noticed people doing is basically claiming that whatever other side is being astroturfed by the “real evil”, right. “Fossil fuel is funding renewable FUD of nuclear reactors!” or “Fossil fuels is funding nuclear FUD of renewables!”. You can also see this with liberals claiming that anyone who disagrees with the DNC is a Russian bot, and with people who disagree with libs claiming that libs fund radical right-wing candidates as an election strategy and that this is one of the reasons why they are basically just as bad as those right-wingers.
The core thing you need to understand about this, as a claim, is that they can both be true. They can both be backed opposition, controlled opposition, astroturfing. Because it’s not so much that they’re funding one racehorse that they want to be their opposition, so much as they are going to fund both sides, plant bad faith actors among both sides, bad faith discourse and division, thought terminating cliches, logical fallacies, whatever, and then by fueling the division, they’ve successfully destroyed their opposition. The biggest help to the fossil fuels lobby isn’t the fact that conversations about nuclear or renewables are happening when “we should be pushing, we should be in emergency mode, everyone should agree with me or get busted” right, as part of this “emergency mode” is us having these conversations. No, the biggest help to fossil fuels lobbies is the nature of the discourse, rather than the subjects of the discourse.
Also I find it stupid that people are arguing for all in on one of the other. That’s dumb. Really, very incredibly dumb. Mostly as I see this discourse happening in a disconnected top-down vacuum separate from any real world concerns because everyone just wants to be “correct” in the largest sense of the word and then have that be it. Realistically, renewables and nuclear are contextually dependant. Renewables can be better supplemented by energy storage solutions to solve their not matching precisely the power usage curves and trends, but a lot of those proposed storage solutions require large amounts of concrete, careful consideration of environmental effects, and large amounts engineering, i.e. the same shit as nuclear. It can both be true that baseload doesn’t matter so much as things like solar can more closely match the power usage curves naturally for desert climates where large amounts of sunlight and heat will create larger needs for A/C, and it can also be true that baseload is a reality in other cases where you can’t as easily transition power needs or try to offset them without larger amounts of infrastructural investment or power losses. Can’t exactly preheat homes in the day so they stay warm at night, in a cold climate, if the r-values for your homes are ass because everyone has a disconnected suburban shithovel that they’re not recouping maintenance costs of when they pay taxes.
These calculations of cost offsets and efficiencies have to be made in context, they have to be based in reality, otherwise we’re just arguing about fucking nothing at all. Maybe I will also hold water in the debates for money not being a great indicator of what’s possible, probable, or what’s the best long term solution for humanity, too, just to put that out there. But God damn this debate infuriates me to no end because people want to have their like, universal one size fits all top down kingly decree take of, well is this good or bad, instead of just understanding a greater, more nuanced take on the subject.
If you wanna have a top-down take on what’s the best, you probably want global, big solar satellites, that beam energy down with microwave lasers.
And yet, I remain bullish.
Lemy has such a hard on against nuclear. I’m seeing reports by antinuclear think tank grifters shoved in my face almost daily…
For this particular design, they could have powered the earth by connecting turbines to the eyes of every engineer and project manager from us all rolling them in the back of our heads upon hearing “no cost overruns or delays”.
Lemy has such a hard on against nuclear
Maybe you should spend more time outside. Every flavor of nuclear has worse approval ratings than most dirtbag politicians.
I’m seeing reports by antinuclear think tank grifters shoved in my face almost daily…
Why do you think you need to PAY people to oppose nuclear? After seven decades of cockamamie “this time it’s different” schemes most people just moved on.
Woa bro I was saying hard on but this is a full on raging erection maybe you should deal with your frustrations
Nuclear fanboys are strange! The won’t let it go.
Because it’s really cool tech and unlike burning coal, oil and gas it’s CO2 neutral. And alternatives like fusion reactors are still decades away, at least, and we can’t build renewables fast enough either.
In my opinion shutting down all nuclear powerplants was the stupidest thing the government here in Germany has ever done, especially since coal is still being subsidized and our planet isn’t getting any cooler.
What is so cool about making some water boil?
Because you’re not just making a fire to make water boil, you’re literally splitting atoms in a controlled environment. That’s kinda cool. You can’t do that at home.
Yea but splitting atoms just to boil water. The atom splitting part is the cool part. Using it just to boil water is not so cool.
Aside from flattening a city, what exactly would you do with nuclear technology? How do you think we could capture the energy from fission without boiling water?
Well it seems like a stupid idea to use nuclear technology to boil some water. So just don’t. Just because it’s possible doesn’t mean you should do it.
And yet for a plethora of regions it’s the only viable alternative to fossil fuels for reliable electricity.
It’s not because of smr, it’s just that all large projects have this level of corruption and grift.
all large projects have this level of corruption and grift
Skill issue. I can’t even blame capitalism, since the french manage to get almost 90% of their power from nuclear.
China has 53 GW installed, 25 GW under construction, and another 47 GW planned. Generally they’re pretty clear-eyed when it comes to major projects like this, so I think we can infer the availability of cheap hydro and solar doesn’t favor doing more than ~15% nuclear since they’re only planning to increase it by 150% over the next couple decades.
Maybe that will change when they set up long term storage/reprocessing.
Surely you made a typo? 50 MW is a tenth of the electrical yield of the smallest PWR you can profitably operate.
Off by a factor of 1000. That’s why I’m not a nuclear engineer.
So, there’s this thing called Java…
Edit: Changed introductory wording to be less belligerent. I am sorry if I have caused a significant level of offense.
Just wait for the nuclear shills to flood in and claim that nuclear fission is a sustainable and necessary form of power generation.Some people claim that nuclear fission is a sustainable and necessary form of power generation. It is not. Uranium extraction devastates entire landscapes, the construction of nuclear power plants is too expensive (even for SMRs, as the article explains), ergo electricity prices will climb, it is a hugely wasteful use of so many tonnes of concrete (concrete manufacturing is heavy on the environment too), it creates waste that will still haunt us for hundreds of thousands of years (finding geological structures that are guaranteed to be stable that long is difficult), and relative to the initial construction and set-up effort, they don’t provide that much energy. We already have methods that can provide us plenty enough electricity that are entirely sustainable by leveraging large-scale atmospheric aerodynamics as well as the largest nuclear fusion reactor at our disposal (the sun). There’s simply no need to go nuclear.ricdeh 4 points 58 minutes ago* (last edited 56 minutes ago)
Just wait for the nuclear shills to flood in and claim that nuclear fission is a sustainable and necessary form of power generation. No, it is not. Uranium extraction devastates entire landscapes, the construction of nuclear power plants is too expensive (even for SMRs, as the article explains), ergo electricity prices will climb, it is a hugely wasteful use of so many tonnes of concrete (concrete manufacturing is heavy on the environment too), it creates waste that will still haunt us for hundreds of thousands of years (finding geological structures that are guaranteed to be stable that long is difficult), and relative to the initial construction and set-up effort, they don’t provide that much energy. We already have methods that can provide us plenty enough electricity that are entirely sustainable by leveraging large-scale atmospheric aerodynamics as well as the largest nuclear fusion reactor at our disposal (the sun). There’s simply no need to go nuclear.
Brought to you by fossil fuel propaganda filtered through renewable resource advocates who would also lose out to nuclear energy.