Shouldn’t the vacuum insulate the glass from the heat of the burning filament?

  • @FiskFisk33@lemmy.world
    link
    fedilink
    39
    edit-2
    2 years ago

    Vacuum means no convection heat. It however does not mean no radiation heat. The filament radiates heat through vacuum the same way the sun does.

    Additionally, theres not vacuum in buldbs, but inert gas, like argon.

  • @testfactor@lemmy.world
    link
    fedilink
    292 years ago

    In addition to the stuff everyone else is saying, most modern bulbs don’t have a vacuum at all.

    Most modern bulbs are filled with an inert gas like argon or xenon. Usually at a lower pressure (around 70% of standard atmospheric pressure), but nowhere near a vacuum.

    This has, while inert to chemical reaction, is more than capable of transferring heat.

  • Apepi
    link
    fedilink
    122 years ago

    Heat is infrared. Light. Vacuum doesn’t have much effect.

    Also many bulbs are filled with inert gases rather than being vacuums.

    • @fubo@lemmy.world
      link
      fedilink
      332 years ago

      Heat is infrared. Light.

      All light heats up anything that absorbs it. This includes infrared, but it also includes visible light, microwaves, radio waves, etc. You can get a nasty burn from putting your hand near a live radio transmitter antenna, for example, even though it’s emitting in RF, not infrared.

      In addition, all physical objects glow with a light that is determined by their temperature. This includes your body. You are, right now, emitting light. As it happens, because of your body’s temperature, that light is mostly in the infrared.

      Why do kids’ science books leave you with the impression that “heat is infrared”? Because you can see body heat with an infrared camera. Infrared is light that you can’t see with your eyes — but with the right tool, you can use to see body heat. This rounds off to “heat is infrared”.

      Heat is not infrared. All physical objects emit light; objects around human body temperature glow mostly in the infrared; which we can’t see with our eyes, but can see with scientific instruments. And when an object absorbs light (including infrared), it gets hotter.

  • @Hazdaz@lemmy.world
    link
    fedilink
    92 years ago

    3 forms of heat transfer

    Conduction. Transfer of heat from one medium to another.

    Convection. Transfer of heat within the same medium.

    Radiation. Non-contact transfer of heat.

  • @Archpawn@lemmy.world
    link
    fedilink
    72 years ago

    In addition to what others have said, they’re not a vacuum inside. They’re filled with 0.7 atm of argon gas. That would slow the transfer of heat, but there’d still be plenty of heat transfer through convection.

  • I’m no lightbulb expert but I can tell you a vacuum still allows heat transfer via radiation. This is how we get warm from the sun.

    I also doubt the inside of a filament lightbulb is a near perfect vacuum, but maybe a bulb expert will come along to shed some light on that.

  • @fubo@lemmy.world
    link
    fedilink
    5
    edit-2
    2 years ago

    The filament is heated by electrical resistance. That heat energy comes out as photons in a wide band in the visible and infrared parts of the spectrum. Some of those photons are intercepted by the glass bulb, the metal housing, etc.; their energy heats these materials up.

    Even though a vacuum prevents conduction of heat energy, it doesn’t prevent radiation of that energy in the form of photons. That’s how the light gets from the filament to the room; and that’s how the heat gets to the surface of the bulb too.

  • @kadu@lemmy.world
    link
    fedilink
    12 years ago

    There’s no perfect vacuum. But as others have mentioned already, most of it is electromagnetic radiation. A very small part of this radiation is the visible light you see, most of it is invisible to the human eye.