“Fully charged in 12 minutes” is meaningless without a capacity.
Ok it has the ‘capacity’ to charge in 12 minutes - can you smell smoke?
Pretty much any battery can charge in 12 minutes if you can handle their thermal constraints.
A decent lipo can charge at 5C, but it significantly reduces the cycle life. They are claiming 1000 cycles at that charge rate.
I agree, the title is pretty useless.
Even something like “Fully charged a double A battery in 28 seconds” would’ve been useful/interesting.
It’s not, if you charge any capacity with 1C, it will take an hour. Looks like they achieved stable charging at over 4C (charging current in amperes 4x larger than stated capacity in amp-hours).
EDIT: C is not Coulomb in this case
The point being, if it only works in the lab for minimal capacities, it’s never going to see the light of production.
How do you think batteries started out?
There are tons of technologies that are inherently unscalable. Or won’t be for another 50 years. Commercial unviability is one thing, but physic limitations are another matter.
True, but that doesn’t mean this is one of them.
That said, I think salt batteries will eclipse these.
What are you referring to when you say “salt batteries”?
What the general public thinks: Car or phone battery.
What the scientists mean: Button cell battery for hearing aids.
Reality: never makes it past the article/news cycle to scalable manufacture.If only the claim were accompanied by a detailed explanation of what the people involved have actually achieved.
Did you want to add anything to the discussion or just make a snarky comment? I looked through the paper linked in the article and didn’t see a capacity listed.
Our approach directs an alternative Li2S deposition pathway to the commonly reported lateral growth and 3D thickening growth mode, ameliorating the electrode passivation. Therefore, a Li–S cell capable of charging/discharging at 5C (12 min) while maintaining excellent cycling stability (82% capacity retention) for 1000 cycles is demonstrated. Even under high S loading (8.3 mg cm–2) and low electrolyte/sulfur ratio (3.8 mL mg–1), the sulfur cathode still delivers a high areal capacity of >7 mAh cm–2 for 80 cycles.
A 5C charging rate is great, but it’s pretty useless if the battery is too small to be practical.
No I didn’t want to add anything to the discussion, thank you.
I’ve read news about better battery technology for YEARS, and then nothing. Repeat the cycle.
Let me know when it’s released to the public and actually usable.
But the battery technology did improve in these years.
You need to look at battery lab research on a 10-20 year time before it gets commercialized at scale.
Moreover, go look at your rechargeable batteries from 10 or 20 years ago. They’re heavier, less energy dense, have shorter lifespans, have much slower charge rates. A lot of those advancement started in a lab and look many years to make it to your laptop or car.
You’re expecting revolution. You’re getting evolution.
Well, it only looks like nothing because our power demands have increased as well.
Current Lithium Ion Polymer batteries are a far cry from the ones of a decade ago, despite being very similar tech.
The main issue with most of these alternative battery approaches are either low capacity, or low charge cycles. Finding a chemistry that both packs enough power in a small enough package to run devices for long term, and that don’t wear out quickly is difficult.
In my lifetime, about the only rechargeable battery the average person had in their home was the one in their car. Now we’ve added 4 new major battery chemistries to the commercial space, some with multiple variants within them and all with improvements throughout their lifetimes. This is what science and technology looks like. The results you’re looking for would be magic or wishful thinking.
Lots of small, incremental improvements. The news predictably is always promising a huge breakthrough
“We made a minor incremental improvement to our manufacturing process using existing technologies what will improve battery cycles by 1%! Amazing!”
Even under rapid charging conditions with a full charge time of just 12 minutes, the battery achieved a high capacity of 705 mAh g⁻¹, which is a 1.6-fold improvement over conventional batteries. Furthermore, nitrogen doping on the carbon surface effectively suppressed lithium polysulfide migration, allowing the battery to retain 82% capacity even after 1,000 charge–discharge cycles, demonstrating excellent stability.
Assuming that this is scalable for production… Which is a big if for many of these “breakthroughs”, then this could replace current Lithium Ion batteries in most devices with a noticeable bump in capacity. Everything else is pretty par for the course though with current technologies.
The full charge time is meaningless without knowing what capacity they were working with. And a quick skim didn’t seem to have that in the article.
I dont give a shit fucking care untill i can buy it. Ive heard a million “this new battery tech will change the world” headlines.
New battery tech HAS changed the world though. We wouldn’t have modem EVs, smartphones, etc with the batteries of yesteryear.
Then get out of technology and start reading posts in buy it for life.