

The sweetest thing in nature is honey, nearly pure sugar that doesn’t spoil. Honey tends to be available year round in Africa where our taste buds evolved.
The sweetest thing in nature is honey, nearly pure sugar that doesn’t spoil. Honey tends to be available year round in Africa where our taste buds evolved.
Throwing untrained people out of a commercial airliner at high speed in the middle of a emergency is a good way to ensure no one survives. The equipment would add a significant amount of space, fuel and maintenance burden too, and require major compromises to the aircraft design itself. All to resolve a problem that effectively never happens.
Any cryptography you’re likely to encounter uses fixed size primes over a residue ring for performance reasons. These superlarge primes aren’t relevant for practical cryptography, they’re just fun.
Cleanroom RE is how you prove that’s what you did to a court. The point is to avoid into a courtroom with Nintendo at all, making the point moot.
The thing is, steam’s market dominance is one of user choice rather than anticompetitive strategies or lack of alternatives. Steam doesn’t do exclusives, they don’t charge you for external sales, they don’t even prevent you from selling steam keys outside the platform, or users from launching non steam games in the client. The only real restriction is that access to steam services requires a license in the active steam account. Even valve-produced devices like the steam deck can install from other stores.
Sure, dominance is bad in an abstract theoretical way and it’d be nice if Gog, itch.io, etc were more competitive, but Steam is dominant because consumers actively choose it.
Extradition treaties are almost always reciprocal and this particular treaty is publicly available. No public treaty is going to include a promise not to coup another government because of the obvious political consequences of admitting you might to everyone else.
Chrome branched off of Webkit, the core of Safari. Certain parts are distantly related, but the browsers are managed and developed separately. Most chrome forks are much closer to the original project and don’t do significant on the browser, just maintain some small patches and customize the branding.
Leaving aside the likely-correct sibling comment that they don’t own the land, double and triple parking is difficult for robots to do quickly / safely. It probably isn’t a high priority and they might be more bottlenecked by getting vehicles in or out of the lot.
“welp” isn’t related to whelping. It’s a way to write the word “well” when it’s used as an interjection (meaning it has no definition). The word is often pronounced with a terminal -p and people started writing the letter in text.
The security level should be the user’s choice. Maybe I don’t care if my neopets account is hacked. Maybe the 2fa offered actually decreases security, like the SMS 2FA required by my 401k account that can be used as the sole recovery factor, bypassing the password. Maybe I’m accessing from a system configuration that makes 2fa really annoying, like a build system running inside a fresh VM on every run.
The service doesn’t have the context necessary to know when 2FA is warranted.
deleted by creator
The CSB doesn’t regulate and it can’t issue fines. They also don’t show up unless you’ve already had an incident. When they do show up, it’s simply to document and investigate the root causes, so they can issue recommendations to one of the regulatory agencies that actually enforces things. You need to have really fucked up for an agency with literally 40 staff overseeing one of the largest industrial economies in the world to notice you.
There’s probably a bunch of reasons for the multi wing design, but the big one is going to be improving lift/carrying capacity without increasing the width.
The most efficient wings for low speeds are glider wings: as long and thin as possible. That makes them inconvenient to pack and folding joints are weak points. The second wing adds lift, but also problems: it’s less efficient than a single wing of the combined length would be and the front wing makes the rear wing less efficient. The winglet improves the situation somewhat. Facing downward also improves maneuverability.
I couldn’t find official dimensional accuracy specs for any formlabs machines except the 1, which lists 150um. Perhaps you’re talking about the 3, which has a specified minimum spot size of 85um according to this paper. Where did they claim micron dimensional accuracy?
Wavelength has a very direct impact on the resolution you can print because it’s an optical system. Under perfect conditions, it’ll be diffraction limited, which is typically anywhere from several hundred nm to tens of microns. That’s an ideal system though, you’re actually going to be getting a dimensional accuracy somewhat above that in practice, probably tens to hundreds of um.
TCP has been amended in backwards incompatible ways multiple times since 1993. See e.g. RFCs 5681, 2675, and 7323 as examples.
Plus, speaking TCP/IP isn’t enough to let you to use the web, which is what most people think of when you say “Internet”. That 1993 device is going to have trouble speaking HTTP/1.1 (or 1.0 if you’re brave) to load even the most basic websites and no, writing the requests by hand doesn’t count.
It’s pretty unintuitive because we’re not used to dealing with ocean sized bodies of water in day to day life. Part of the explanation is just that the prevailing winds pile all the water in the Pacific up against the coast, causing higher sea levels on the West Coast. The lower salinity of the Pacific also causes lower water density, which translates to higher sea levels.
I haven’t explained what the differences are because almost everything is different. It’s like comparing a Model T to a Bugatti. They’re simply not built the same way, even if they both use internal combustion engines and gearboxes.
Let me give you an overview of how the research pipeline occurs though. First is the fundamental research, which outside of semiconductors is usually funded by public sources. This encompasses things like methods of crack formation in glasses, better solid state models, improved error correction algorithms and so on. The next layer up is applied research, where the fundamental research is applied to improve or optimize existing solutions / create new partial solutions to unsolved problems. Funding here is a mix of private and public depending on the specific area. Semiconductor companies do lots of their own original research here as well, as you can see from these Micron and TSMC memory research pages. It’s very common for researchers who are publicly funded here to take that research and use it to go start a private company, usually with funding from their institution. This is where many important semiconductor companies have their roots, including TSMC via ITRI. These companies in turn invest in product / highly applied research aimed at productizing the research for the mass market. Sometimes this is easy, sometimes it’s extremely difficult. Most of the challenges of EUV lithography occurred here, because going from low yield academic research to high yield commercial feasibility was extremely difficult. Direct investment here is almost always private, though there can be significant public investments through companies. If this is published (it often isn’t), it’s commonly done as patents. Every company you’ve heard of has thousands of these patents, and some of the larger ones have tens or hundreds of thousands. All of that is the result of internal research. Lastly, they’ll take all of that, build standards (e.g. DDR5, h.265, 5G), and develop commercial implementations that actually do those things. That’s what OEMs buy (or try to develop on their own in the case of Apple modems) to integrate into their products.
You have no idea how modern technology is produced. Any particular product is usually the result of dozens to thousands of iterations, some funded with public money and many not. Let’s take an example from your chart: DRAM. I actually don’t know when DARPA “developed” DRAM (since DARPA usually funds private companies to do development for them), but it must have been before 1970 when Intel designed the 1103 chip that got them started. Do you think that pre-1970s design is remotely similar to the DRAM operating on your device today? I’ll give you a hint: it’s not.
And no, modern device development does not consist of gluing a bunch of APIs together. Apple maintains its own compilers, languages, toolchains, runtimes, hardware, operating systems, debugging tools, and so on. Some of that code had distant origins in open source (e.g. webkit), but that’s vastly different than publicly funded and those components are usually very different today.
They’re failing to produce competitive modems because modern wireless is one of closest things humans have to straight up black magic. It’s extremely difficult to get right, especially as frequencies go up, SNR goes down, and we try to push things ever faster despite having effectively reached the Shannon limit ages ago.
A bit, but it’s a major caloric source in forager diets.